Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470466

RESUMO

The neuroendocrine system that controls the preovulatory surge of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH), which triggers ovulation in female mammals, is sexually differentiated in rodents. A transient increase in circulating testosterone levels in male rats within a few hours of birth is primarily responsible for the defeminization of anteroventral periventricular nucleus (AVPV) kisspeptin neurons, which are critical regulators of the GnRH/LH surge. The present study aimed to determine whether neonatal estradiol-17ß (E2) converted from testosterone by aromatase primarily causes the defeminization of AVPV kisspeptin neurons and the surge of GnRH/LH in male rodents. The results of the present study showed that the neonatal administration of letrozole (LET), a nonsteroidal aromatase inhibitor, within 2 hours of birth rescued AVPV Kiss1 expression and the LH surge in adult male rats, while the neonatal administration of testosterone propionate (TP) irreversibly attenuated AVPV Kiss1 expression and the LH surge in adult female rats. Furthermore, the neonatal LET-treated Kiss1-Cre-activated tdTomato reporter males exhibited a comparable number of AVPV Kiss1-Cre-activated tdTomato-expressing cells to that of vehicle-treated female rats, while neonatal TP-treated females showed fewer AVPV Kiss1-Cre-activated tdTomato-expressing cells than vehicle-treated females. Moreover, neonatal TP administration significantly decreased the number of arcuate Kiss1-expressing and Kiss1-Cre-activated tdTomato-positive cells and suppressed LH pulses in adult gonadectomized female rats; however, neonatal LET administration failed to affect them. These results suggest that E2 converted from neonatal testosterone is primarily responsible for the defeminization of AVPV kisspeptin neurons and the subsequent GnRH/LH surge generation in male rats.


Assuntos
Aromatase , Kisspeptinas , Proteína Vermelha Fluorescente , Animais , Feminino , Masculino , Ratos , Aromatase/metabolismo , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo , Testosterona/metabolismo
2.
J Reprod Dev ; 69(5): 227-238, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37518187

RESUMO

Hypothalamic kisspeptin neurons are master regulators of mammalian reproduction via direct stimulation of gonadotropin-releasing hormone and consequent gonadotropin release. Here, we generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats. First, we validated Kiss1-Cre rats by generating Kiss1-expressing cell-specific Kiss1 knockout (Kiss1-KpKO) rats, which were obtained by crossing the current Kiss1-Cre rats with Kiss1-floxed rats. The resulting male Kiss1-KpKO rats lacked Kiss1 expression in the brain and exhibited hypogonadotropic hypogonadism, similar to the hypogonadal phenotype of global Kiss1 KO rats. Histological analysis of Kiss1 neurons in Kiss1-Cre-activated tdTomato reporter rats revealed that tdTomato signals in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) were not affected by estrogen, and that tdTomato signals in the ARC, AVPV, and medial amygdala (MeA) were sexually dimorphic. Notably, neonatal AVPV tdTomato signals were detected only in males, but a larger number of tdTomato-expressing cells were detected in the AVPV and ARC, and a smaller number of cells in the MeA was detected in females than in males at postpuberty. These findings suggest that Kiss1-visualized rats can be used to examine the effect of estrogen feedback mechanisms on Kiss1 expression in the AVPV and ARC. Moreover, the Kiss1-Cre and Kiss1-visualized rats could be valuable tools for further detailed analyses of sexual differentiation in the brain and the physiological role of kisspeptin neurons across the brain in rats.


Assuntos
Kisspeptinas , Caracteres Sexuais , Ratos , Animais , Feminino , Masculino , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Neurônios/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA